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Abstract: Small but macroscopic particles - chondrules, higher temperature min-

eral inclusions, metal grains, and their like - dominate the fabric of primitive

meteorites. The properties of these constituents, and their relationship to the

fine dust grains which surround them, suggest that they led an extended exis-

tence in a gaseous protoplanetary nebula prior to their incorporation into their

parent primitive bodies. In this paper we explore in some detail the velocities

acquired by such particles in a turbulent nebula. We treat velocities in inertial

space (relevant to diffusion), velocities relative to the gas and entrained micro-

scopic dust (relevant to accretion of dust rims), and velocities relative to each

other (relevant to collisions). We extend previous work by presenting explicit,

closed-form solutions for the magnitude and size dependence of these velocities

in this important particle size regime, and compare these expressions with new

numerical calculations. The magnitude and size _ dependence of these velocities

have immediate applications to chondrule and CAI rimming by fine dust, and

to their diffusion in the nebula, which we explore separately.

1 Background

The fabric of the most primitive meteorites undoubtedly contains many clues as to their

origin. While most chondrites are samples of surfaces that have been well worked over by

impacts and stirring ("regolith breccias"), the dominance of chondrules and like-sized objects

remains clear. How it came about that most chondrite parent bodies are so dominated by

particles with such a well-defined range of physical, chemical, and petrographic properties

remains one of the big puzzles of meteoritics. Since there are relatively few examples of

anything larger than 0.1-10 mm size particles in most primitive planetesimals, the way such

particles interact with the gaseous nebula is of prime importance.

Fe-Mg-Si-O mineral chondrules, which solidified from a melt, constitute 30-80% of primi-

tive meteorites. There are a number of extant hypotheses for the formation of the chondrules.

Most workers in the field believe that chondrules are formed by either localized or nebula

scale energetic events operating on freely floating precursors of comparable mass, at some

location or locations in the protoplanetary nebula. However, some still maintain they are

made in or on primitive bodies, or in collisions between them. In a hybrid scenario, some

suggest they are formed in shock waves generated by already-formed planetesimals, and thus

that they are a secondary phenomenon to primary accretion of planetesimals. See eg. Gross-

man (1989), Grossman et al. (1989), Boss (1996), Connolly and Love (1999), and Jones et

al. (2000) for reviews of hypotheses on this long-controversial and perennially fascinating

subject.
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Another meteorite constituent of great interest are the mineral grains called Ca-Al-rich

refractory inclusions (CAIs) - so called because their constituent minerals condense out of

nebula gas at a much higher temperature than do chondrules. These objects are widely

believed to be direct nebula condensates, and have a complex subsequent thermal history

which has some similarities to that of chondrules and some differences. There is some in-

dication from radioisotope ages that CAIs might be _-, 106 years older than the chondrules,

but this remains slightly controversial. They make up 1-10% of primitive meteorites de-

pending on type, and their size distribution is broader than that of the chondrules. How

these high-temperature minerals find themselves intimately mixed with lower-temperature

minerals remains a puzzle.

It remains unresolved at this time whether the nebula gas was turbulent or laminar dur-

ing the chondrule era. In previous papers, we have suggested that some of the observed

properties of chondrules themselves - their typical size and size distribution - can be as-

sociated with, and easily explained by, the effects of weak nebula turbulence (Cuzzi et al

1996, 2001). Nevertheless, a consistent end-to-end scenario for formation of primitive bodies

in this environment, and relying on these processes, is not yet in hand. In this paper, we

focus on the velocity evolution of this specific class of particles in a weakly turbulent nebula

as a step towards developing a more complete scenario that operates to produce primitive

bodies in a similar way across a variety of environments. The velocity evolution is critical for

our understanding of several important aspects of chondrules and chondrites: (a) the radial

distribution and redistribution or transport of chondrules and/or CAIs, once formed, before

their accumulation into parent bodies; (b) The presence of fine grained rims on chondrules,

CAIs, and other coarse particles in primitiv6 chondrites (Metzler and Bischoff 1996, Brearley

and Jones 1998); and (c) collision rates and velocities between chondrule-sized particles. The

main goal of this paper is to provide a theoretical framework within which we can better

understand mm-to-cm-size particle evolution in general. We accomplish this in sections 1

(analytical theory) and 2 (supporting numerical calculations). In another paper we apply

these results to diffusion and dust rimming (Cuzzi 2002b).

1.1 Particle Velocities in Turbulence

Astrophysical modeling of the basic physics of particle behavior in fluid flows, laminar or

turbulent, tends to begin and end with the classic papers by Whipple (1973), Adachi et al.

(1976), Weidensehilling (1977, 1980), and VSlk et al. (1980, henceforth VJMR; also V61k et

al. 1978), with important recent updates by Markiewicz et al. (1991; henceforth MMV). In

the fluid dynamics literature, however, the study of particle motions in fluid flows has both a

long history, and a robust ongoing presence. This history is nicely summarized by Meek and

Jones (1973). More recent work in the fluids literature is noted in various relevant places

below. VJMR first developed a useful formalism for calculating the dispersion velocities W

(relative to inertial space) and collision velocities Vpp (relative to each other) of particles in

a turbulent nebula. They circumvented the thorny problem of "essential nonlinearity" (cf.

Meek and Jones 1973) by translating clever physical insights into mathematics and adopting

a velocity autocorrelation function approach, which we discuss in more detail below. While it

serves an important internal role in their solutions, neither VJMR nor MMV say much about

the relative velocity between particles and gas, Vpg. Yet, I_9 is the determinant quantity for



accretionof rims of fine dust grains by small, macroscopicobjects (Paqueand Cuzzi 1997,
Cuzzi et al 1998,Morrill et al. 1998). Our goal in this paper is to quantify _, Vpg, and Vpp

for such particles in a way that extends and focusses the formulation of VJMR and MMV,

and which allows insights to be gained into the history of chondrules and like-sized particles

in the protoplanetary nebula.

In this paper, we determine velocities of all three kinds - Vp, Vpg, and Vpp - with emphasis

on particles having stopping times ts comparable to the overturn time t, of Kolmogorov

scale eddies. Particles in this size regime have behavior more complex than tiny "dust"

grains, which are essentially trapped to the gas flow on all scales. In particular, particles

with ts = t, are subject to "preferential concentration" by large factors in turbulence, and

based on some of its apparent fingerprints in the meteorite record, we have suggested a link

between this process, chondrules, and primary accretion. Specifically, we refer to the fact

that the typical size and the shape o] the size distribution of chondrules are readily explained

by turbulent concentration (Cuzzi et al 1996, 2001). In a parallel paper (Cuzzi 2002b) we

explore the possibility that the functional form of Vpg might reveal another fingerprint of

turbulent concentration, and that turbulence might help us understand the puzzling mix of

CAIs and chondrules in the same

Particles are aerodynamically

stopping time ts to the overturn

meteorites.

classified by their Stokes number St, the ratio of their

time of some characteristic eddy. We will make use of

Stokes numbers defined relative to two different eddy overturn timescales: the Stokes number

relative to the largest, or integral scale eddy time tL: St L -- ts/tL, and that defined relative to

the smallest, or Kolmogorov scale eddy time t_" St_ = t_/t_. The overturn time of the largest

scale eddy t L is generally regarded as the local orbit period. Preferentially concentrated

particles (chondrules, we believe) have St_ = 1 and StL << 1. For these particles, which

are smaller than the gas molecular mean free path, the stopping time t_ = rpJcpg, where

r is particle radius, p_ is particle material density, c is the nebula sound speed, and P9 is

the nebula gas density (Weidenschilling 1977). That is, ts and thus both StL and St, are

linearly proportional to particle radius.

1.2 Previous work; the autocorrelation function

We briefly review and simplify the notation of VJMR and MMV. VJMR assumed a fully

developed inertial range of turbulence with some largest, or integral scale L and zero smallest

scale. MMV also adopted the Kolmogorov energy spectrum (as shall we) but correctly

pointed out that turbulence ceases for scales smaller than the Kolmogorov or inner scale

r/. Especially for small particles in the chondrule-and-CAI size range, MMV point out that

this has important implications for W and Vpp, and we will show that the implications are

important for Wg as well. In a Kolmogorov spectrum, an inertial range of turbulent gas

kinetic energy extends from the largest or integral scale l = L to the smallest or Kolmogorov

scale l = r]. Following VJMR, we work in the spatial frequency regime, where k(1) = 2_r/l

and E(k) = EL(k/kL) -5/3 for the Kolmogorov spectrum (note our E(k) is a true energy, and

is half of VJMR's P(k)). Then v(k) = (2kE(k)) 1/2 and t(k) = l/(kv(k)) = tL(k/kL) -2/3.

As did MMV, we assume E(k) = 0 for k > k, (no turbulent energy at scales smaller than

the Kolmogorov scale). The mean squaie turbulent (fluctuating) gas velocity is I_; thus

the typical turbulent kinetic energy per unit gas mass is Vg_/2, providing the normalization



criterion:

L L

The turbulent gas motions induce fluctuating velocities in the particle population, leading

to diffusion (Vp), mutual collisions (Vp.), and motion relative to the local gas (Vp9).
VJMR derive Vp formally by a backwards time integration of the instantaneous acceler-

ation (their equations 5 and 6):

tVp(t) = t_ 1 exp(-(t-t')/t_)Vg(t')dt' (2)

where Vg(t' ) represents the fluctuating gas velocity history along a particle trajectory (for-

mally unknown at this point). They proceed by approximating Vg(t') as an integral over all

(independently acting) spatial frequencies k with eddy timescales tk, and approximate the

contributions as coming from two classes of eddies: "class 1" eddies, with overturn times

long enough (tk > ts) that particles are always in equilibrium within them, and are primarily

just advected by their (temporally fluctuating) motions, and "class 3" eddies with overturn

times too short (tk < t_) for the particle to come to equilibrium as it passes through them.

Intermediate, or what might be "class 2" eddies are not treated separately, but simply ab-

sorbed into the classes on either side. Different simplifications are allowed for each class.

The boundary between eddy classes 1 and 3 is k*, wherg_tk, = t_. VJMR show that the class

3 (small, fast) eddies are negligible for velocity components Vp and Vpg, but dominate the

contributions to Vpp. We will make use of these results below.

VJMR first obtain the product < Vp(t)Vp(t) >=< V_ > by integrating backwards over

two separate time histories. They introduce the gas velocity autocorrelation function for gas

velocities (in their equation 16) R(t, t'; k) = exp (-it - t'l/tk). While they don't make the

distinction, the autocorrelation function to be used in this way is properly that determined

along a particle trajectory (Batchelor 1948, Hinze 1975, Squires and Eaton 1990, Elghobashi

1991), and is thus a function of ts in general. However, for StL << 1, and at this stage of

our knowledge, this distinction is not significant (Squires 1990).

Subsequently, MMV suggested a more general, even if acl hoc, functional form for R(t, if; k):

It - t'l e(_lt_t, lltk )
R(t,t';k) = 1+ _ , (3)

with n = 0 or 1. They note that the n = 1 case has more plausible physical behavior (zero

slope) near t = t' than the n = 0 (pure exponential) form assumed by VJMR.

1.2.1 New results regarding the form of the autocorrelation function_ and the

value of n:

The selection of n = (0, 1) determines the form of the fluid velocity autocorrelation function

R(t, t'; k). Squires (1990) measured this function directly in his direct numerical simulations

of turbulence, by following fluid motions along the trajectories of a number of particles with

"different StL. In figure 1 we compare the results of Squires (1990) with the predictions

based on the n = 0 and n = 1 expressions of MMV for R(t, t'; k). Note that, since MMV

4
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Figure 1: Autocorrelation function for gas velocities along the trajectory of a Stn = 1

particle, as" computed directly from our simulations (dotted) and from the simulations of

Squires (1990), and as calculated using the n = 0 and n = 1 models of MMV. Here, _- = t - t'

and is normalized by the large eddy turnover time TL. The n = 1 model is clearly the better

choice.

express their autocorrelation function as a function of k, it must be integrated over an energy

spectrum to compare with the numerical results of Squires (1990). Because Squires (1990)

only calculated a 1-D autocorrelation function (ie., using only one velocity component), we

integrated the R(t, t'; k) of MMV over a 1D energy spectrum (essentially, one-third of the

total E(k)) (see also Squires and Eaton 1991). It is clear from figure 1 that n = 1 is the better

choice. This has important implications, primarily for Vpg and _p. In section 2, we directly

compare Vp and Vp9 calculated in full 3D turbulence using the two alternate autocorrelation

functions, and again reach the same conclusion.

1.3 Particle random velocities relative to inertial space

After some algebra, VJMR derive an expression (their equation 18) for the mean square par-

ticle fluctuating velocity Vv, of which we need only the large, slow (class 1) eddy contribution

since the small eddy contribution is negligible for St_ = 1 particles (we will henceforth drop

the <> notation on Vp, 1_, Vpg, and Vvv , and will merely recall that all are statistical expec-

tation values based on extensive temporal or spatial averaging). Because of our emphasis

on particles with St, = 1, we also replace the upper limit of VJMR's class 1 integral (k*)

with the Kolmogorov scale k_. This simplification is, in fact, actually fairly good over the

entire range of StL << 1, precisely because the contribution of eddies on smaller scales than

k*' (the class 3 eddies) is negligible. That is, the upper limit can be extended from k* to k_

in general for mathematical simplicity without incurring significant error. Mathematically,



the upper limit could even be extended to infinity (eg., V61k et al. 1980), but the important

role of the Reynolds number and of the Kolmogorov scale is then lost. Thus,

Similarly, the generalized MMV expression for Vp2 (their equation 6) can be simplified to

( ( ( 1 /1-( +tsj jd =2fl"E(k) 1- ek (5)
JkL JkL 1 + tk/t_ ] ]

for the particle size regime of interest here. As did VJMR, MMV note that the second

integral of their equation (6) - the class 3 eddy contribution - is negligible for small particles,

so we retain only the first integral of their equation (6). We again simplify the upper limit

of integration in the remaining integral for the nominal St_ _ 1 case where k* _ k_ >> kL.

We validate this by comparing our results with those of MMV (section 1.7).

The result for V_ was plotted, but not stated explicitly, by VJMR and MMV (figure 1 in

both papers), and explicitly derived by Cuzzi et al. (1993; Appendix B): Vp2 = Vg_/(1 + StL).

It is simple to see why V_,_ _ V_ in the limit StL << 1 and certainly for St,_ ._ 1, since

ts << tk in equations (4) or (5) for nearly all k and ov.e_rwhelmingly all E(k). This limit is

appropriate for chondrule-and-CAI-sized particles even in the presence of their small vertical

settling ve!ocity - they diffuse nearly as well as a gas molecule, and do not "settle to the

midplane" in even a very weakly turbulent nebula (Dubrulle et al. 1995, Cuzzi et al. 1996).

The implications are discussed in section 3. However, i_ 2 and V_ are not ezactly equal,

resulting in a small, but very important, relative energy of motion V_, giving the velocity

with which particles move through the gas and encounter tiny (micron-sized) dust grains.

1.4 Particle velocities relative to the gas

The average relative velocity magnitude between a particle and the turbulent gas is Vpg.

VJMR make use only of the spatial frequency components of this quantity, which they refer to

as V_t(k) (their equation 15). Practically speaking, however, a particle will instantaneously

sense all eddy contributions as one Vpg; we obtain this by merely integrating VJMR equation

(15) over k. Considering only the part of the expression relevant for St, 7 _ 1 (that for

k* > kL), neglecting any systematic velocity, and again letting k* _ k, 7 >> kL, the second

integral vanishes and we obtain

For this n = 0 case treated by VJMR, it can be easily verified using equations (4) and

(6) that

+ v, = 2 E(k) k = v,: (r)
Jk L

However, this useful result is true independent of n. It may also be obtained by Fourier

transform solution of the forcing equations in temporal frequency (w) space, where the



energyspectrumof gasvelocity fluctuations E_(w), particle velocity fluctuations Ep(w), and

relative velocity fluctuations Epg(w) are related by

Ep(w) = Eg(w)/(1 + t2sw2) and Epg(w ) = t2sw2Ep(w). (8)

This approach can be traced to Csanady (1963); it is also described by Hinze (1975, chapter

5), Meek and Jones (1973), and Squires (1990, sections 4.2 and 4.5.1)). The Ep solution

was also derived in this way by Cuzzi et al. (1993, Appendix B). It is also clear then that

Epg(w) + Ep(w) = Eg(w), essentially the same result as equation (7) above. Finally, we have

directly verified equation (7) in our numerical simulations.

Using this general relationship, we can extend the results of MMV to obtain Vp_ for their

more generalized gas velocity autocorrelation functions (they only present results for Vp2).

That is, using equations (1) and (5),

( 1 dk. (9)
kL l+h/t:]

We will use equations (5) and (9), with assumed inertial range expressions for E(k), to

derive analytical expressions for Vp and _g of hypothetically "chondrule-like" (ie., St, _ 1)

particles as functions of their size and the turbulent Reynolds number.

1.5 Relative velocities between particle's of similar sizes

Expressions for Vpp (VJMR Appendix C and equation 19; MMV equations 7 and 8) are more

cumbersome: but respond nicely to certain simplifying assumptions. The full expression for

Vpp for two particles of equal size is (changing notation slightly from MMV equation 9, and

allowing for a finite Kolmogorov scale):

, t_ g(x)+ dk, (10)
Vp_=4 E(k) 1 t,+tk t_+tk

where g(x) = tan-l(X)/X and h(x) = 1/(1 + X2). The parameter X of VJMR and MMV is

small in our regime of interest:

V_et(k)t_(ktk)_ V_et(k)t_ V_et(k______)
X = ts + tk - v(k)(t, + tk) _ 2v(k) < 1, (11)

since in the very limited range of k over which the integral is done, t, _ tk. l In fact X << 1

over most of the integral where t_ << tk, so the functions g(x) and h(x) are _ 1 or perhaps

as small as a fraction of order unity; thus

V/_p2_ 4Lk_E(k) [l_ (t_+tkt_ )_+11 dk=4 LI T E(k) [1- (1 + tklt_]l _+l]jdk. (12)

The integrand is identical to that for V#, but the integral has different limits which make it

clear that only the eddies faster than ts can perturb identical particles into having incoherent

relative velocities.

1In the above equation, the mathematical generalization of Vpg by VJMR and MMV to its k-th com-

ponents V_l(k) momentarily reappears. However, it is true in general, at any spatial frequency, that the
particle-gas relative velocity is less than, or at most equal to, the gas velocity itself.



1.6 Scaling relations

Recall that for the gas,

tk = l(k)/v(k) = (L/Vg)(k/kL)-_/3= tL(k/kL)-_/_ (13)

(Cuzzi et al. 2001). In equation (13) we have made the usual identification of I_ with the

largest scale eddy L. For the particles,

t, StL (k,/kL)-_/3 (14)
tL

and

t_t-_= (k/k,)_/_= _(k/k_)_/_ = St_(k/k_)_/,' (1_)

Note that if we restrict our attention to particles with St, 7 = t_lt,7 _ 1, then their Stokes

number referred to the integral scale automatically becomes

StL = ts/tL = t,7/tL = (k_/kL) -2/3 = (Re3�4) -2/3 = Re-l� 2. (16)

The last substitution of (k,JkL) = Re 3/4, where Re = LVg/u is the flow Reynolds number,

with u being the molecular kinematic viscosity, is a direct consequence of the definitions of

the Kolmogorov scale, the energy dissipation rate, and the Reynolds number (Tennekes and

Lumley 1972). This relation can be obtained without any reference at all to the Kolmogorov

spectrum but merely using scaling arguments relating to tL and t,7.2 Re is related to astro-

physical "a,-models of the protoplanetary nebula by Re = c_cH/u with c = sound speed

and H = nebula vertical scale height (Cuzzi et aI. 2001).

1.7 Final expressions for Vpg and Vpp

Substituting the scaling relations from above for tJtk, equation (9) for Vp9 becomes

Vp2g= 2 L E(k) l + tk/t_ dk = 2 L E(k) Stc + (k/kL)-2/a dk. (17)

We use the normalization (equation 1) to write E(k) = (_2/3kL)(k/kL)-_/3, and change
integration variable to'x = k/kL, leaving

2Vg2 StL n+1

_P2g=--3--/P_3'4 (StL _-_-2/3 ) x-5/adx. (18)

where in the upper limit we have substituted k,JkL = Re 3/4 from the scaling relations.

Closed form solutions for equation (18) can be obtained for n = 0 or 1. For example, for

n = 1 the result of the integral is

[StL ]1 :_2[ St2L(Re_/2-1)] (19)VP_9= Vg= 1 + -_LX2/3JR_/, (StL + 1)(StLRe'/2 + 1) "

2Let the energy dissipation rate be e. Then e = V]/tL = V_/L where the first expression defines tL

and the last expression defines L. Also t, = (v/e) 1/2 and _?= (va/e)l/4. Solving gives tL/t, = Re 1/2 and
_/L = Re _/4.



For n = 0 the result of the integral is:

Vp2g= V_ [StL In \ R----_S_L _ i ] ]
(20)

These results make it quite easy to predict both the magnitude and the St. dependence of

Vpg for arbitrary nebula turbulent intensity.
We solve equation (12) for Vpp in a similar fashion to the solution for Vpg above, to obtain

for n= 1:

V_ = 4Vg2 fk,/kL ( 2StLX-7/3 -_- X -9/3 )---3- Jk(t_)/kL St2L + 2_qtL x-2/3 + X -4/3 dx. (21)

As before, the upper integration limit is k,/kL = Re 3/4. For the lower limit, k*/kL =

k(ts)/kL = (tJtL) -3/2 = StL 3/2 from the scaling relations. The dosed form analytic solution

of this integral is:

X_2/3Vp2p--- 2Vg 2 ]. + StL x2/3

St-_s/2

Re3/4

1 R6/2]. (22)= 2V2 [S-_ L StLRe+

The n = 0 form of the solution is somewhat less useful, and we note it without expanding it

as it will not be used further. "_

x2/a x2-/3 StL3/_

1.8 Detailed comparisons with the models of Markiewicz et al.

In addition to developing the analytical expressions discussed and applied in the paper,

we also developed a detailed numerical model following the prescriptions of MMV exactly

(but with a generalized turbulent energy spectrum). This was needed both to evaluate

their theoretical approach in the context of our numerical simulations of turbulence (section

2), which have a non-Kolmogorov spectrum and low Reynolds number compared to nebula

applications, and to assess the validity of our analytical approximations. The numerical

model of MMV is no longer in active use (W. Markiewicz, personal communication 2002),

so we digitized their Vvv results (their figure 5) to facilitate comparisons. As seen in figure

4, our full numerical model for Vpp (solid curves) agrees very well with their results for Vvv

(long dashed curves). In figure 2 we also show our results for Vp_, not presented by VJMR

or MMV, as obtained by integrating MMV equation 4 over all spatial frequencies. Note that

we, and MMV, both use the appropriate form of R(t, t'; k) (ie., that for the correct choice

of n; section 1.2) for these calculations.

The most striking feature of the results, first noted by MMV, is that Vvp very quickly falls

to zero for particles with St, < 1 (i.e. StL < Re -1/2, as shown in the scaling relations of sec-

tion 1.6 above) because there is no more energy in faster eddies to provide relative velocities

to such particles. This does not happen to t_9, because eddies on all scales contribute. Also

note that Vp and Vpv decrease for large particles (StL > 1), as fewer eddies can effectively
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curves, their figure 5, for n = 1). Three different Re are shown: (a) 10 4, (b) 10 ?, and (c)

10 9. The dash-dot curves are for lip, which has the same shape for all three Re. Vp9 is shown
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values of Vp9 (light dotted curves) are considerably (3-4 times) higher than the preferred

n = 1 values (heavy dotted curves), and the StL-dependence of Vpg, for n = 0, never gets

much above 0.5, whereas for n = 1 a linear dependence is seen for StL < Re -1/2. As in

figures 4 and 5, vertical hash marks correspond to StL -----/_e-1/_ for the three values of Re.
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couple to particles with such long stopping times. Naturally, Vpg simply approaches l/'g for

these large particles.

Upon comparing our original analytical results (equations 19 and 22) with our full nu-

merical model and the MMV results, we found some small quantitative discrepancies at the

order unity level, as might be expected. The responsible approximations were easily identi-

fled. First, we approximated the boundary between class 1 and class 3 eddies by ts = t(k*)

rather than the more complete equation 9 of VJMR and equation 4 of MMV, which ob-

tains the relevant eddy frequency in the moving frame of the particle and involves Vr_l(k).

Comparison of the two criteria revealed that, to a very good approximation, the criterion

ts = t(k*) gives a value of k* that is too large by a factor close to 2 (figure 3). So, after

this "calibration", we merely decrease the lower limit of integration in our equation (22) by

a factor of 2. Second, even after this correction, our values of Vpp are about 200-/0 high. This

is easily ascribed to our approximation that g(x) and h(x) are equal to unity throughout

the entire range of k; in fact, they are tens of percent smaller than unity over some part

of this range, depending on the value of StL. Empirically, this is corrected by multiplying

our analytical expression for Vvp by a constant factor of 0.8. With these two simple adjust-

ments, each correcting a known oversimplification, our analytical expression for Vvv achieves

very good good agreement with the MMV results, and with our own full numerical model,

over the relevant range of Str < 0.1 or so. There appears to be no reason to make such

refinements to our analytical expression for Vpg (equatibn 19), because our approximations

are better justified and the agreement with MMV acceptable.

1.9 Numerical refinements to the model

With insights gained from comparison of our numerical andanalytical models, we have made

two small adjustments to equation (22) for Vvv which correct for two of our approximations.

Equation (22) is multiplied by a factor of 0.8, and the upper integration limit (StL _/2) is

divided by two, so the first term in the final expression changes from StL/2 to StL/1.03 .._

StL. The approximations entering into our expression for I/p9 are better, so no correction is

applied. The final equation for Vpp is then

2 1 Re1�2] " (23)V_p = 1.6V_ [StL- StLRe +

The results of equations (19) and (23) (the preferred and adjusted n = 1 forms), normalized

by Vg, are shown in figure 4 for the same three values of Re as in MMV, and in closeup

form in figure 5.

As shown by MMV (their figure 21, and as seen previously in our figure 2, the falloff

of Vvp is extremely steep for St, < 1 (i.e. StL < Re -1/2 as shown in the scaling relations

of section 1.6 above) because there is no more energy in faster eddies to provide relative

velocities to such particles.

1.10 Simplification of analytically determined velocity expressions:

Equations (19) and (23) - for the preferred n = 1 case - are readily simplified in different

limits of interest. It is simply shown by retaining leading terms that equation (19) for Vpg

11
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Figure 3: Correction of our approximation k* _ StL 3/2 by a factor of two (dash-dot line)

which brings it into excellent agreement (in our range of validity StL < 0.1) with the ex-

act numerical solution for k*, shown for Re = 10 4, 10 7, and 10 9, computed using the full

VJMR/MMV expression. Only very close to Sto = 1 does our approximation deviate slightly;

notice the tiny tail at StL = 6 × 10 -3, k* = 10 3, which is the Kolmogorov scale for Re = 10 4.
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results in three separateregimes:Vpg _ Vg for StL > 1, Vpg _ StL/2 for Re -I/2 < StL << 1,

and Vpg cx StLRe 1/4 for StL _ Re -1/2. This is confirmed by inspection of figures 2 and 4. In

the special case of St, = 1, or StL : Re -1/2, equation (19) reduces directly to

Re -1/4 (v) 1/4Vpg(St,= l)= Vg --_ -ca 1/4 _ , (24)

where we have substituted Vg = ca 1/2 (Cuzzi et al. 2001). This Re-dependence, which also

applies for St, 7 < 1 in general, quite naturally explains a result we obtained empirically from

our numerical models over a range of Re much smaller than nebula values, namely that

Vpg/V 9 c_ Re -1/4 (Cuzzi et al. 1998). By contrast, it is similarly shown from equation (20)

that the StL-dependence of _9 for the older n = 0 case continues the StlL/2 dependence to
arbitrarily small StL.

These results are also consistent with arguments in Cuzzi et al. (1993, Appendix B;

A. Dobrovolskis, personal communication). Expand and time-average the instantaneous

quantity < (Vp- _)2 > to obtain < VpgI_9 >=< VpVp > + < I_ > -2 < I_I_ >.

Substituting from Cuzzi et el. (1993, equation Bll) we find < VpV_ >=< VpVg >=< VgVg >

/(1 + StL), leading to Vpg = (StL/(1 + StL)) 1/2 Vg, which reaches the same limits as equation

(19) except for particles with t_ < tn, or St n _< 1, because the integral in its derivation

(equation Bll of Cuzzi et al. 1993) extends to infinite eddy frequency.

Thus, unless t_ <_ t, 7 (StL < Re-l�2), the particle-gas relative velocity in turbulence is

generally proportional to V/-fftL for small Stn. The steeper dependence of l_g on Stn and

St, 7 is restricted (in turbulence) to particles with St, 7 < 1. That is, evidence for a more

nearly linear dependence of l_g on r, if the environhlent was turbulent, would imply that

the particles in question were St, 7 < 1 particles. This ne_ result derives directly from the

use of the n = 1 gas velocity autocorrelation function. The primary qualitative change is in

the particle size dependence of Vpg for particles with St,7 < 1. We address the significance

of this in more detail in a forthcoming paper (Cuzzi 2002b).

Finally, using equation (23) for Vpp, we get

Vpp(St_ = 1)= v/-U_VgRe-_/4= 1.26Vpg, (25)

where we used equation (24) for Vpg.

2 Comparison with numerical results

In this section we compare numerical results from our full 3D Lagrangian particle-gas model

(Hogan et al. 1999) with full numerical calculations using our implementation of MMV

(sections 1.8-1.9). We present particle velocities relative to the computational box (lip), and

relative to the local fluid velocity (Vpg), as obtained from our simulations. These velocities

are defined as RMS spatial averages over all particles in a single snapshot, or V = (< (V_- <

V_ >)2 > + < (V_- < V_ >)2 > + < (V_- < V_ >)2 >)1/2, where V represents Vp or Vpg at
N,the location of each particle, and <> is the averaging operator < ... >= _=_(...)/N_, where

N_ is the number of particles in a single snapshot. Of course, < V > is very close to zero

for both these quantities since there is no mean flow in our simulations.
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Figure 6: Vp vs. St L obtained from our direct simulations compared with MMV predictions

for models n = 0 (solid line) and n = 1 (dashed line). A.H velocities have been normalized by

the RMS fluid velocity Vg. Results are shown for three different Re; the StL values for each

point are defined relative to a large eddy time based on energy dissipation 2, which varies

with .Re for our numerical calculations. When they are defined relative to a constant large

eddy time, as are our analytical models and the MMV models shown in figure 2, points

and models for all Re collapse onto the same curve as seen in figure 2. The n = 1 MMV

prediction is clearly a better fit to the numerically simulated velocities, regardless of the

choice of normalization timescale.

This spatial averaging approach is equivalent to the temporal averaging implicit in the

MMV model, because of the ergodic principle that equates temporal and spatial averaging

under suitable conditions. In our case, the conditions are satisified because our integral

length scale L is small compared to the spatial period of the computational domain, for all

Re.

The case of Vpp is more complicated, as the results depend on the proximity region chosen

for "neighboring" particles. For the most useful comparisons with the predictions of MMV

and VJMR, and with the expected uses of this quantity in mind, the region over which

particle neighbors are selected should be as small as possible - less than r] certainly - and

here we run into sampling errors. Perhaps most important, the deviation of our model energy

spectrum from a Kolmogorov spectrum is significant (e9. Squires and Eaton 1990), and l_p is

much more sensitive to the details of the high-spatial-frequency end of the energy spectrum

than either Vp or Vpg. Since the main purpose of these calculations is to verify numerically

the preference for the n = 1 autocorrelation function in an independent way from the direct

comparison shown in figure 1, and because this case is already well made by the Vp and Vpg

plots, we present no comparisons for Vpp.

Figures 6 - 9 show that the n = 1 autocorrelation function provides a much better

15
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fit to both _ and Vpg than the n = 0 version. For Vm, the _its of the MMV theory to

our simulations are less perfect than for Vp. We can see several possible explanations for

this. For instance, the mathematically simple form adopted for the n = 1 autocorrelation

function is not a perfect fit to the actual numerically determined one (figure 1), by about the

correct fractional amount. Also, we have emphasized that the correct velocity autocorrelation

function to use is that along a particle trajectory (Meek and Jones 1973), and this function

is actually somewhat size dependent even over the range St, ,-_ 1 (see, eg., Squires 1990,

figure 4-23). Finally, because of the deviation of our turbulent kinetic energy spectrum from

an inertial range, some of the definitions of eddy times used in the MMV theory might

be inappropriate. It would not be surprising for Vpg to be more sensitive to these small

deviations than Vv (compare figures 6 and 8, or 7 and 9). In spite of the small deviations in

Vvg , the combination of the direct comparisons of the autocorrelation functions themselves

(figure 1), and the comparison of the velocities derived using them (figures 6-9) makes it
clear that the n = 1 autocorrelation function is the best choice.

3 Summary and conclusions

We present theoretical and numerical results which describe the turbulence-driven velocities

of particles in the StL << 1 size regime which might characterize chondrules and similar

sized particles. We numerically verify the general approach of VJMR as modified by MMV,

and verify in two different ways the intuitive preference of MMV for an n = 1 gas velocity

autocorrelation function - at least along the trajectories of St_ _ 1 particles. We find

theoretically that the n = 1 autocorrelation function leads to a particle-gas relative velocity

function that approaches linear dependence on particle size for particles in the St_ _ 1

17



regime, and becomesand remains linear for arbitrarily small sizes. This is quite a different
result than predicted by the original VJMR n = 0 expressions. We derive simple analytic

expressions for Vp, Vp9 , and Vpp (the latter, for comparable size particles only) for arbitrary

levels of nebula intensity, as characterized by its Reynolds number Re or its corresponding

"a". In a separate paper (Cuzzi 2002b) we will present some implications of these results
for meteoritics.
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Parameter Definition

Table I. List of symbols

C

C

E(k)
H

k

kL

k,
L

T

R

Re

StL

St,

ts

tk

tL

t_

v;

O_

(

12

12T

_2

Pg

Ps

gas molecule thermal speed

particle concentration factor

turbulent kinetic energy at wavenumber k

nebula vertical scale height

eddy wavenumber

wavenumber of largest eddy

wavenumber of Kolmogorov scale eddy

integral or largest scale in turbulent energy spectrum

particle radius

gas velocity autocorrelation function

flow Reynolds number

Stokes number relative to largest eddy

Stokes number relative to Kolmogorov scale eddy

stopping time of particle due to gas drag

overturn time of eddy with wavenumber k

overturn time of largest eddy

overturn time of Kolmogorov scale eddy "J

gas turbulent velocity (large eddy)

particle random velocity in inertial space

relative velocity between particles and gas

relative velocity between particles .-.

nebula viscosity parameter; Re = _cH/12

dissipation of turbulent kinetic energy

Kolmogorov scale

molecular kinematic viscosity

turbulent kinematic viscosity

eddy temporal frequency

gas mass density

solid particle mass density
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Abstract: Small but macroscopic particles - chondrules, higher temperature min-
eral inclusions, metal grains, and their like - dominate the fabric of primitive
meteorites. The properties of these constituents, and their relationship to the
fine dust grains which surround them, suggest that they led an extended exis-
tence in a gaseous protoplanetary nebula prior to their incorporation into their
parent primitive bodies. In this paper we explore in some detail the velocities

acquired by such particles in a turbulent nebula. We treat velocities in inertial

space (relevant to diffusion), velocities relative to the gas and entrained micro-

scopic dust (relevant to accretion of dust rims), and velocities relative to each

other (relevant to collisions). We extend previous work by presenting explicit,

closed-form solutions for the magnitude and size dependence of these velocities

in this important particle size regime, and compare these expressions with new

numerical calculations. The magnitude and size' dependence of these velocities

have immediate applications to chondrule and CAI rimming by fine dust, and

to their diffusion in the nebula, which we explore separately ....

1 Background

The fabric of the most primitive meteorites undoubtedly contains many clues as to their

origin. While most chondrites are samples of surfaces that have been well worked over by

impacts and stirring ("regolith breccias" ), the dominance of chondrules and like-sized objects

remains clear. How it came about that most chondrite parent bodies are so dominated by

particles with such a well-defined range of physical, chemical, and petrographic properties

remains one of the big puzzles of meteoritics. Since there are relatively few examples of

anything larger than 0.1-10 mm size particles in most primitive planetesimals, the way such

particles interact with the gaseous nebula is of prime importance.

Fe-Mg-Si-O mineral chondrules, which solidified from a melt, constitute 30-80% of primi-

tive meteorites. There are a number of extant hypotheses for the formation of the chondrules.

Most workers in the field believe that chondrules are formed by either localized or nebula

scale energetic events operating on freely floating precursors of comparable mass, at some

location or locations in the protoplanetary nebula. However, some still maintain they are

made in or on primitive bodies, or in collisions between them. In a hybrid scenario, some

suggest they are formed in shock waves generated by already-formed planetesimals, and thus

that they are a secondary phenomenon to primary accretion of planetesimals. See eg. Gross-

man (1989), Grossman et el. (1989), Boss (1996), Connolly and Love (1999), and Jones et

al. (2000) for reviews of hypotheses on this long-controversial and perennially fascinating

subject.



Another meteorite constituent of great interest are the mineral grains calledCa-Al-rich
refractory inclusions (CAIs) - so called becausetheir constituent mineralscondenseout of
nebula gas at a much higher temperature than do chondrules. Theseobjects are widely
believedto be direct nebula condensates,and havea complexsubsequentthermal history
which hassomesimilarities to that of chondrulesand somedifferences. There is somein-
dication from radioisotopeagesthat CAIs might be ,-_ 106 years older than the chondrules,

but this remains slightly controversial. They make up 1-10% of primitive meteorites de-

pending on type, and their size distribution is broader than that of the chondrules. How

these high-temperature minerals find themselves intimately mixed with lower-temperature

minerals remains a puzzle.

It remains unresolved at this time whether the nebula gas was turbulent or laminar dur-

ing the chondrule era. In previous papers, we have suggested that some of the observed

properties of chondrules themselves - their typical size and size distribution - can be as-

sociated with, and easily explained by, the effects of weak nebula turbulence (Cuzzi et al

1996, 2001). Nevertheless, a consistent end-to-end scenario for formation of primitive bodies

in this environment, and relying on these processes, is not yet in hand. In this paper, we

focus on the velocity evolution of this specific class of particles in a weakly turbulent nebula

as a step towards developing a more complete scenario that operates to produce primitive

bodies in a similar way across a variety of environments. The velocity evolution is critical for

our understanding of several important aspects of chondrules and chondrites: (a) the radial

distribution and redistribution or transport of chondrules and/or CAIs, once formed, before

their accumulation into parent bodies; (b) The presence of fine grained rims on chondrules,

CAIs, and other coarse particles in primitive chondrites (Metzler and Bischoff 1996, Brearley

and Jones 1998); and (c) collision rates and velocities between chondrule-sized particles. The

main goal of this paper is to provide a theoretical framework within which we can better

understand mm-to-cm-size particle evolution in general. We accomplish this in sections 1

(analytical theory) and 2 (supporting numerical calculations). In another paper we apply

these results to diffusion and dust rimming (Cuzzi 2002b).

1.1 Particle Velocities in Turbulence

Astrophysical modeling of the basic physics of particle behavior in fluid flows, laminar or

turbulent, tends to begin and end with the classic papers by Whipple (1973), Adachi et al.

(1976), Weidenschilling (1977, 1980), and VSlk et al. (1980, henceforth VJMR; also VSlk et

al. 1978), with important recent updates by Markiewicz et al. (1991; henceforth MMV). In

the fluid dynamics literature, however, the study of particle motions in fluid flows has both a

long history, and a robust ongoing presence. This history is nicely summarized by Meek and

Jones (1973). More recent work in the fluids literature is noted in various relevant places

below. VJMR first developed a useful formalism for calculating the dispersion velocities Vp

(relative to inertial space) and collision velocities Vpp (relative to each other) of particles in

a turbulent nebula. They circumvented the thorny problem of "essential nonlinearity" (cf.

Meek and .Jones 1973) by translating clever physical insights into mathematics and adopting

a velocity autocorrelation function approach, which we discuss in more detail below. While it

serves an important internal role in their solutions, neither VJMR nor MMV say much about

the relative velocity between particles and gas, Vpg. Yet, l_g is the determinant quantity for



accretionof rims of fine dust grains by small, macroscopicobjects (Paqueand Cuzzi 1997,
Cuzzi et al 1998,Morrill et al. 1998). Our goal in this paper is to quantify Vp, Vpg, and Vpp

for such particles in a way that extends and focusses the formulation of VJMR and MMV,

and which allows insights to be gained into the history of chondrules and like-sized particles

in the protoplanetary nebula.

In this paper, we determine velocities of all three kinds - Vp, Vpg, and Vpp - with emphasis

on particles having stopping times ts comparable to the overturn time t_ of Kolmogorov

scale eddies. Particles in this size regime have behavior more complex than tiny "dust"

grains, which are essentially trapped to the gas flow on all scales. In particular, particles

with t_ = t_ are subject to "preferential concentration" by large factors in turbulence, and

based on some of its apparent fingerprints in the meteorite record, we have suggested a link

between this process, chondrules, and primary accretion. Specifically, we refer to the fact

that the typical size and the shape of the size distribution of chondrules are readily explained

by turbulent concentration (Cuzzi et al 1996, 2001). In a parallel paper (Cuzzi 2002b) we

explore the possibility that the functional form of Vpg might reveal another fingerprint of

turbulent concentration, and that turbulence might help us understand the puzzling mix of

CAIs and chondrules in the same meteorites.

Particles are aerodynamically classified by their Stokes number St, the ratio of their

stopping time t_ to the overturn time of some characteristic eddy. We will make use of

Stokes numbers defined relative to two different eddy overturn timescales: the Stokes number

relative to the largest, or integral scale eddy time tL: StL = tJtL, and that defined relative to

the smallest, or Kolmogorov scale eddy time t_: St_ = t_/t_. The overturn time of the largest

scale eddy tL is generally regarded as the local orbit period. Preferentially concentrated

particles (chondrules, we believe) have St, = 1 and StL << 1. For these particles, which

are smaller than the gas molecular mean free path, the stopping time t_ = rps/cpg, where

r is particle radius, p_ is particle material density, c is the nebula sound speed, and pg is

the nebula gas density (Weidenschilling 1977). That is, t_ and thus both StL and St, 7 are

linearly proportional to particle radius.

1.2 Previous work; the autocorrelation function

We briefly review and simplify the notation of VJMR and MMV. VJMR assumed a fully

developed inertial range of turbulence with some largest, or integral scale L and zero smallest

scale. MMV also adopted the Kolmogorov energy spectrum (as shall we) but correctly

pointed out that turbulence ceases for scales smaller than the Kolmogorov or inner scale

r/. Especially for small particles in the chondrule-and-CAI size range, MMV point out that

this has important implications for lip and Vpp, and we will show that the implications are

important for Vpg as well. In a Kolmogorov spectrum, an inertial range of turbulent gas

kinetic energy extends from the largest or integral scale l = L to the smallest or Kolmogorov

scale l = 77. Following VJMR, we work in the spatial frequency regime, where k(1) = 2roll

and E(k) = EL(k/kL) -s/a for the Kolmogorov spectrum (note our E(k) is a true energy, and

is half of VJMR's P(k)). Then v(k) = (2kE(k)) 1/2 and t(k) = 1/(kv(k)) = tL(k/kL) -2/3.

As did MMV, we assume E(k) = 0 for k > k_ (no turbulent energy at scales smaller than

the Kolmogorov scale). The mean square turbulent (fluctuating) gas velocity is Vg; thus

the typical turbulent kinetic energy per unit gas mass is V_/2, providing the normalization

3
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The turbulent gas motions induce fluctuating velocities in the particle population, leading

to diffusion (Vp), mutual collisions (Vvv), and motion relative to the local gas (Vpg).

VJMR derive Vp formally by a backwards time integration of the instantaneous acceler-

ation (their equations 5 and 6):

Vv(t ) = t]-1 for exp (-(t - t')/t_)Vg(t')dt' (2)

where Vg(t') represents the fluctuating gas velocity history along a particle trajectory (for-

mally unknown at this point). They proceed by approximating Vg(t') as an integral over all

(independently acting) spatial frequencies k with eddy timescales tk, and approximate the

contributions as coming from two classes of eddies: "class 1" eddies, with overturn times

long enough (tk > t_) that particles are always in equilibrium within them, and are primarily

just advected by their (temporally fluctuating) motions, and "class 3" eddies with overturn

times too short (tk < t_) for the particle to come to equilibrium as it passes through them.

Intermediate, or what might be "class 2" eddies are not treated separately, but simply ab-

sorbed into the classes on either side. Different simplifications are allowed for each class.

The boundary between eddy classes 1 and 3 is k*, wherd_tk. = ts. VJMR show that the class

3 (small, fast) eddies are negligible for velocity components Vp and I_g, but dominate the

contributions to Vvv. We will make use of these results below.

VJMR first obtain the product < Vp(t)l_(t) >=< Vv2 > by integrating backwards over

two separate time histories. They introduce the gas velocity autocorrelation function for gas

velocities (in their equation 16) R(t, t'; k) = exp (-It - t']/tk). While they don't make the

distinction, the autocorrelation function to be used in this way is properly that determined

along a particle trajectory (Batchelor 1948, Hinze 1975, Squires and Eaton 1990, Elghobashi

1991), and is thus a function of t_ in general. However, for StL "_< 1, and at this stage of

our knowledge, this distinction is not significant (Squires 1990).

Subsequently, MMV suggested a more general, even if ad hoc, functional form for R(t, t'; k):

( )n, It- t'! e(_l,_t,t/,_) ' (3)
R(t,t;k)= 1+ tk

with n = 0 or 1. They note that the n = 1 case has more plausible physical behavior (zero

slope) near t = t' than the n = 0 (pure exponential) form assumed by VJMR.

1.2.1 New results regarding the form of the autocorrelation function, and the
value of n-

The selection of n = (0, 1) determines the form of the fluid velocity autocorrelation function

R(t, t'; k). Squires (1990) measured this function directly in his direct numerical simulations

of turbulence, by following fluid motions along the trajectories of a number of particles with

different StL. In figure 1 we compare the results of Squires (1990) with the predictions

based on the n = 0 and n = 1 expressions of MMV for R(t, t'; k). Note that, since MMV



08

0.6

04

0.2

'_ -- _IMV: eqn 5 n-OI

_ ": \ ...... MMV: eqn, 5 n _ !

II \\ \ -- Squires & E_,Lon (|ggO) : Fig3,17

I \

\ •

1 2 3

r/TL

Figure 1: Autocorrelation function for gas velocities along the trajectory of a St, = 1

particle, as' computed directly from our simulations (d<)tted) and from the simulations of

Squires (1990), and as calculated using the n - 0 and n = 1 models of MMV. Here, T = t--t'

and is normalized by the large eddy turnover time TL. The n = 1 model is clearly the better

choice.

express their autocorrelation function as a function of k, it must be integrated over an energy

spectrum to compare with the numerical results of Squires (1990). Because Squires (1990)

only calculated a 1-D autocorrelation function (ie., using only one velocity component), we

integrated the R(t, t'; k) of MMV over a 1D energy spectrum (essentially, one-third of the

total E(k)) (see also Squires and Eaton 1991). It is clear from figure 1 that n = 1 is the better

choice. This has important implications, primarily for Vpu and Vpp. In section 2, we directly

compare Vp and Vpg calculated in full 3D turbulence using the two alternate autocorrelation

functions, and again reach the same conclusion.

1.3 Particle random velocities relative to inertial space

After some algebra, VJMR derive an expression (their equation 18) for the mean square par-

ticle fluctuating velocity Vp, of which we need only the large, slow (class 1) eddy contribution

since the small eddy contribution is negligible for St_ = 1 particles (we will henceforth drop

the <> notation on Vp, Vg, Vpg, and Vpp, and will merely recall that all are statistical expec-

tation values based on extensive temporal or spatial averaging). Because of our emphasis

on particles with St_ = 1, we also replace the upper limit of VJMR's class 1 integral (k*)

with the Kolmogorov scale k_. This simplification is, in fact, actually fairly good over the

entire range of St L << 1, precisely because the contribution of eddies on smaller scales than

k* (the class 3 eddies) is negligible. That is, the upper limit can be extended from k* to k,

in general for mathematical simplicity without incurring significant error. Mathematically,



the upper limit could even be extended to infinity (eg., V61k et al. 1980), but the important

role of the Reynolds number and of the Kolmogorov scale is then lost. Thus,

_k k_

tk
v,: 2 E(k) dk. (4)

n tk + ts

Similarly, the generalized MMV expression for Vp2 (their equation 6) can be simplified to

l_2_2fkkL 'E(k) (1-- (ts+ts) dk=2fkkL "E(k) 1- (l+tk/t_] j dk (5)

for the particle size regime of interest here. As did VJMR, MMV note that the second

integral of their equation (6) - the class 3 eddy contribution - is negligible for small particles,

so we retain only the first integral of their equation (6). We again simplify the upper limit

of integration in the remaining integral for the nominal St, _ 1 case where k* v k, >> kL.

We validate this by comparing our results with those of MMV (section 1.7).

The result for 1_= was plotted, but not stated explicitly, by VJMR and MMV (figure 1 in

both papers), and explicitly derived by Cuzzi et al. (1993; Appendix B): Vp2 = V_/(1 + Stk).

It is simple to see why V_ _ V92 in the limit StL << 1 and certainly for St n _ 1, since

ts << tk in equations (4) or (5) for nearly all k and ov.etwhelmingly all E(k). This limit is

appropriate for chondrule-and-CAI-sized particles even in the presence of their small vertical

settling velocity - they diffuse nearly as well as a gas molecule, and do not "settle to the

midplane" in even a very weakly turbulent nebula (Dubrulle et al. 1995, Cuzzi et al. 1996).

The implications are discussed in section 3. However, 1_2 and 1_2 are not ezactly equal,

resulting in a small, but very important, relative energy of motion V_g, giving the velocity

with which particles move through the gas and encounter tiny (micron-sized) dust grains.

1.4 Particle velocities relative to the gas

The average relative velocity magnitude between a particle and the turbulent gas is Vp_.

VJMR make use only of the spatial frequency components of this quantity, which they refer to

as V_(k) (their equation 15). Practically speaking, however, a particle will instantaneously

sense all eddy contributions as one Vpg; we obtain this by merely integrating VJMR equation

(15) over k. Considering only the part of the expression relevant for St_ -_ 1 (that for

k* > kL), neglecting any systematic velocity, and again letting k* .._ k, >> kL, the second

integral vanishes and we obtain

t_

For this n = 0 case treated by VJMR, it can be easily verified using equations (4) and

(6) that

Jk L

However, this useful result is true independent of n. It may also l_e obtained by Fourier

transform solution of the forcing equations in temporal frequency (w) space, where the



energyspectrumof gasvelocity fluctuations Eg(w), particle velocity fluctuations Ep(w), and

relative velocity fluctuations Epg(w) are related by

E,(w) = E,(w)/(1 + t2,w 2) and E,g(w) = t_w2E,(w). (8)

This approach can be traced to Csanady (1963); it is also described by Hinze (1975, chapter

5), Meek and Jones (1973), and Squires (1990, sections 4.2 and 4.5.1)). The Ep solution

was also derived in this way by Cuzzi et al. (1993, Appendix B). It is also clear then that

Epg(w) + Ep(w) = Eg(w), essentially the same result as equation (7) above. Finally, we have

directly verified equation (7) in our numerical simulations.

Using this general relationship, we can extend the results of MMV to obtain Vp2 for their

more generalized gas velocity autocorrelation functions (they only present results for V_).

That is, using equations (1) and (5),

( dk. (9)
JkL l + ?,/t, ]

We will use equations (5) and (9), with assumed inertial range expressions for E(k), to

derive analytical expressions for lip and Vpg of hypothetically "chondrule-like" (ie., St,_ _ 1)

particles as functions of their size and the turbulent Reynolds number.

1.5 Relative velocities between particle's of similar sizes

Expressions for Vpp (VJMR Appendix C and equation 19; MMV equations 7 and 8) are more

cumbersome, but respond nicely to certain simplifying assumptions. The full expression for

Vpp for two particles of equal size is (changing notation slightly from MMV equation 9, and

allowing for a finite Kolmogorov scale):

V_;2p=4 E(k) 1 ts+tk g(X)+ t,+tk

where g(X) = tan-l(x)/X and h(x) = 1/(1 + X2). The parameter g of VJMR and MMV is

small in our regime of interest:

i4e,(k)t_(ktk) I4el(k)t_ V_l(k_____) (11)
= t, + = v(k)(ts+ tk) 2v(k) < 1,

since in the very limited range of k over which the integral is done, ts _ tk. 1 In fact X << 1

over most of the integral where t_ << tk, so the functions gOt) and h01 ) are _ 1 or perhaps

as small as a fraction of order unity; thus

Vp_.w. 4/k:,E(k)[l_(tst _ _+1]
(12)

The integrand is identical to that for V_, but the integral has different limits which make it

clear that only the eddies faster than t_ can perturb identical particles into having incoherent

relative velocities.

1In the above equation, the mathematical generalization of l_g by VJMR and MMV to its k-th com-

ponents V,,t(k) momentarily reappears. However, it is true in general, at any spatial frequency, that the
particle-gas relative velocity is less than, or at most equal to, the gas velocity itself.

7



1.6 Scaling relations

Recall that for the gas,

tk = l(k)/v(k) = (L/Vg)(k/kL) -2/3 = tL(k/kL)-2/3 (13)

(Cuzzi et al. 2001). In equation (13) we have made the usual identification of V9 with the
largest scale eddy L. For the particles,

t_ = StL (ks/kL) -2/3 (14)
tL

and

ts (k/k )2/3 StL(k/k )2/3'tk

Note that if we restrict our attention to particles with St,

number referred to the integral scale automatically becomes

(15)

= t_/t_ _ 1, then their Stokes

StL = G/tL = t,/tL = (k,/kL) -2/3 = (Re3�4) -2/3 = Re -1/2. (16)

The last substitution of (k_/kL) = Re 3/4, where Re = Lt_/u is the flow Reynolds number,

with v being the molecular kinematic viscosity, is a direct consequence of the definitions of

the Kolmogorov scale, the energy dissipation rate, and the Reynolds number (Tennekes and

Lumley 1972). This relation can be obtained without any reference at all to the Kolmogorov

sPectrum but merely using scaling arguments relating to tL and t_. 2 Re is related to astro-

physical "a"-models of the protoplanetary nebula by Re = acH/v with c = sound speed

and H = nebula vertical scale height (Cuzzi et al. 2001).

1.7 Final expressions for Vpg and Vpp

Substituting the scaling relations from above for ts/tk, equation (9) for Vpg becomes

r r (Vp2g= 2 L E(k) l +tk/ts dk= 2 L E(k) StL +(k/kL)-2/3] dk. (17)

We use the normalization (equation 1) to write E(k) = (Vg2/3kL)(k/kL)-S/3, and change
integration variable to x = k/kL, leaving

-- --_ .11 StL + x-2/3 x-5/3dx" (18)

where in the upper limit we have substituted k,/kL = Re 3/4 from the scaling relations.

Closed form solutions for equation (18) can be obtained for n = 0 or 1. For example, for

n = 1 the result of the integral is

11 [ ]VP9 = V92 1 + StLX2/3JR,_/, = Vge (StL + 1)(StLRe'/2 + 1) "

2Let the energy dissipation rate be (. Then _ = V]/tL =_ V_/L where the first expression defines tL

and the last expression defines L. Also t, = (v/e) _/2 and r/= (v3#)_/4. Solving gives tL/t, = Re _/2 and
rl/L = Re 3/4.

8



For n = 0 the result of the integral is:

Rel/2StL + 1 "
(20)

These results make it quite easy to predict both the magnitude and the St_ dependence of

Vpg for arbitrary nebula turbulent intensity.

We solve equation (12) for Vpp in a similar fashion to the solution for Vpg above, to obtain

forn= 1:

(T k(t,)/k,_ St2L-+_ -_7§ TX -4/3) dx. (21)

As before, the upper integration limit is k_/kL = Re 3/4. For the lower limit, k*/kL =

k(G)/kn = (G/tn) -3/2 = StL 3/2 from the scaling relations. The closed form analytic solution

of this integral is:

x_2/3"3 = 1+ stLx2/3
StL 3/2

ReS/4

1 Re1�2] " (22)= 2V_ [S_ L StLRe+

The n = 0 form of the solution is somewhat less useful, and we note it without expanding it

as it will not be used further. "_

1.8

1
x 2/3 ) z 2/zj stz3/_

Detailed comparisons with the models of Markiewicz et al.

In addition to developing the analytical expressions discussed and applied in the paper,

we also developed a detailed numerical model following the prescriptions of MMV exactly

(but with a generalized turbulent energy spectrum). This was needed both to evaluate

their theoretical approach in the context of our numerical simulations of turbulence (section

2), which have a non-Kolmogorov spectrum and low Reynolds number compared to nebula

applications, and to assess the validity of our analytical approximations. The numerical

model of MMV is no longer in active use (W. Markiewicz, personal communication 2002),

so we digitized their Vpp results (their figure 5) to facilitate comparisons. As seen in figure

4, our full numerical model for Vpp (solid curves) agrees very well with their results for Vpp

(long dashed curves). In figure 2 we also show our results for Vp9, not presented by VJMR

or MMV, as obtained by integrating MMV equation 4 over all spatial frequencies. Note that

we, and MMV, both use the appropriate form of R(t, t'; k) (ie., that for the correct choice

of n; section 1.2) for these calculations.

The most striking feature of the results, first noted by MMV, is that Vpp very quickly falls

to zero for particles with St_ < 1 (i.e. StL < Re -a/2' as shown in the scaling relations of sec-

tion 1.6 above) because there is no more energy in faster eddies to provide relative velocities

to such particles. This does not happen to Vpg, because eddies on all scales contribute. Also

note that Vp and Vpp decrease for large particles (StL > 1), as fewer eddies can effectively
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Figure 2: Comparison of our numerical version of the full MMV model for n = 0 (light

curves) and n = 1 (heavy curves), along with digitized results for l_p from MMV (dashed

curves, their figure 5, for n = 1). Three different Re are shown: (a) 10 4, (b) 10 7, and (c)

10 9. The dash-dot curves are for lip, which has the same shape for all three Re. Vpg is shown

in the two sets of dotted curves and ]_p in the two sets of solid curves. Note that the n = 0

values of I_g (light dotted curves) are considerably (3-4 times) higher than the preferred

n = 1 values (heavy dotted curves), and the StL-dependence of Vpg, for n = 0, never gets

much above 0.5, whereas for n = 1 a linear dependence is seen for StL < Re -1/2. As in

figures 4 and 5, vertical hash marks correspond to StL : Re -1/2 for the three values of Re.
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couple to particles with such long stopping times. Naturally, Vvg simply approaches Vg for

these large particles.

Upon comparing our original analytical results (equations 19 and 22) with our full nu-

merical model and the MMV results, we found some small quantitative discrepancies at the

order unity level, as might be expected. The responsible approximations were easily identi-

fied. First, we approximated the boundary between class 1 and class 3 eddies by t_ = t(k*)

rather than the more complete equation 9 of VJMR and equation 4 of MMV, which ob-

tains the relevant eddy frequency in the moving frame of the particle and involves V_el(k).

Comparison of the two criteria revealed that, to a very good approximation, the criterion

t_ = t(k*) gives a value of k* that is too large by a factor close to 2 (figure 3). So, after

this "calibration", we merely decrease the lower limit of integration in our equation (22) by

a factor of 2. Second, even after this correction, our values of Vpp are about 20% high. This

is easily ascribed to our approximation that g(x) and h(x) are equal to unity throughout

the entire range of k; in fact, they are tens of percent smaller than unity over some part

of this range, depending on the value of StL. Empirically, this is corrected by multiplying

our analytical expression for Vvv by a constant factor of 0.8. With these two simple adjust-

ments, each correcting a known oversimplification, our analytical expression for Vpp achieves

very good good agreement with the MMV results, and with our own full numerical model,

over the relevant range of StL _ 0.1 or so. There appears to be no reason to make such

refinements to our analytical expression for Vvg (equatibn 19), because our approximations

are better justified and the agreement with MMV acceptable.

1.9 Numerical refinements to the model

With insights gained from comparison of our numerical andanalytical models, we have made

two small adjustments to equation (22) for Vpp which correct for two of our approximations.

Equation (22) is multiplied by a factor of 0.8, and the upper integration limit (StL 3/2) is

divided by two, so the first term in the final expression changes from StL/2 to StL/1.03 ,,_

StL. The approximations entering into our expression for Vvg are better, so no correction is

applied. The final equation for Vpp is then

1

The results of equations (19) and (23) (the preferred and adjusted n = 1 forms), normalized

by Vg, are shown in figure 4 for the same three values of Re as in MMV, and in closeup

form in figure 5.

As shown by MMV (their figure 2), and as seen previously in our figure 2, the falloff

of Vvv is extremely steep for Stv< 1 (i.e. Stn< Re -1/2 as shown in the scaling relations

of section 1.6 above) because there is no more energy in faster eddies to provide relative

velocities to such particles.

1.10 Simplification of analytically determined velocity expressions:

Equations (19) and (23) - for the preferred n = 1 case - are readily simplified in different

limits of interest. It is simply shown by retaining leading terms that equation (19) for Vpg

11
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Figure 3: Correction of our approximation k* _ StL 3/2 by a factor of two (dash-dot line)

which brings it into excellent agreement (in our range of validity StL < 0.1) with the ex-

act numerical solution for k*, shown for Re = 10 4, l0 T, and 10 9, computed using the full

VJMR/MMV expression. Only very close to St_ = 1 does our approximation deviate slightly;

notice the tiny tail at StL = 6 × 10 -3, k* : 10 3, which is the Kolmogorov scale for Re = 10 4.
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results in three separate regimes: Vp9 _ Vg for StL > 1, Vpg _ StlL/2 for Re -1/2 < Stn << 1,

and Vpg o( StLRe 1/4 for StL < Re -1/2. This is confirmed by inspection of figures 2 and 4. In

the special case of St, = 1, or StL = Re-U2, equation (19) reduces directly to

%(st. = 1) = Re-'/4 - call4 , (24)

where we have substituted Vg = cc_1/2 (Cuzzi et al. 2001). This Re-dependence, which also

applies for St, < 1 in general, quite naturally explains a result we obtained empirically from

our numerical models over a range of Re much smaller than nebula values, namely that

Vpg/l_ _ Re -U4 (Cuzzi et al. 1998). By contrast, it is similarly shown from equation (20)

that the StL-dependence of Vpg for the older n = 0 case continues the StL/2 dependence to
arbitrarily small StL.

These results are also consistent with arguments in Cuzzi et al. (1993, Appendix B;

A. Dobrovolskis, personal communication). Expand and time-average the instantaneous

quantity < (Vp-Vg) 2 > to obtain < VpgVp9 >=< Vpi_ > + < VgVg > -2 < VpVg >.

Substituting from Cuzzi et hi. (1993, equation Bll) we find < VpVp >=< VpVg >=< VgVg >

/(1 + StL), leading to Vpg = (StL/(1 + StL)) '/2 Vg, which reaches the same limits as equation

(19) except for particles with ts _< t,, or St, < 1, because the integral in its derivation

(equation Bll of Cuzzi et al. 1993) extends to infinite eddy frequency.

Thus, unless ts <_ t, (StL < Re-'�2), the particle-gas relative velocity in turbulence is

generally proportional to Sv/-S-_L for small StL. The steeper dependence of Vpg on StL and

St, is restricted (in turbulence) to particles with Stn < 1. That is, evidence for a more

nearly linear dependence of 1._ on r, if the environinent was turbulent, would imply that

the particles in question were St, _< 1 particles. This ne'_ result derives directly from the

use of the n = 1 gas velocity autocorrelation function. The primary qualitative change is in

the particle size dependence of Vpg for particles with St, _< 1. We address the significance

of this in more detail in a forthcoming paper (Cuzzi 2002b).

Finally, using equation (23) for Vpp, we get

Vpp(St, = 1)= _l_Re -'l't = 1.26Vpg, (25)

where we used equation (24) for I_g.

2 Comparison with numerical results

In this section we compare numerical results from our full 3D Lagrangian particle-gas model

(Hogan et al. 1999) with full numerical calculations using our implementation of MMV

(sections 1.8-1.9). We present particle velocities relative to the computational box (Vp), and

relative to the local fluid velocity (Vm) , as obtained from our simulations. These velocities

are defined as RMS spatial averages over all particles in a single snapshot, or V = (< (_- <

V_ >)2 > + < (Vv_ < Vv >)2 > + < (V_- < I_ >)2 >),/2, where V represents Vp or Vp9 at
N,

the location of each particle, and <> is the averaging operator < ... >= _i=l(...)/Np, where

Np is the number of particles in a single snapshot. Of course, < V > is very close to zero

for both these quantities since there is no mean flow in our simulations.
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Figure 6: Vp vs. StL obtained from our direct simulations compared with MMV predictions

for models n = 0 (solid line) and n = 1 (dashed line). AH velocities have been normalized by

the RMS fluid velocity Vg. Results are shown for three different Re; the StL values for each

point are defined relative to a large eddy time based on energy dissipation s, which varies

with Re for our numerical calculations. When they are defined relative to a constant large

eddy time, as are our analytical models and the MMV models shown in figure 2, points

and models for all Re collapse onto the same curve as se_n in figure 2. The n = 1 MMV

prediction is clearly a better fit to the numerically simulated velocities, regardless of the

choice of normalization timescale.

This spatial averaging approach is equivalent to the temporal averaging implicit in the

MMV model, because of the ergodic principle that equates temporal and spatial averaging

under suitable conditions. In our case, the conditions are satisified because our integral

length scale L is small compared to the spatial period of the computational domain, for all

Re.

The case of l@ is more complicated, as the results depend on the proximity region chosen

for "neighboring" particles. For the most useful comparisons with the predictions of MMV

and VJMR, and with the expected uses of this quantity in mind, the region over which

particle neighbors are selected should be as small as possible - less than 77 certainly - and

here we run into sampling errors. Perhaps most important, the deviation of our model energy

spectrum from a Kolmogorov spectrum is significant (eg. Squires and Eaton 1990), and Vpp is

much more sensitive to the details of the high-spatial-frequency end of the energy spectrum

than either _ or Vpg. Since the main purpose of these calculations is to verify numerically

the preference for the n = 1 autocorrelation function in an independent way from the direct

comparison shown in figure 1, and because this case is already well made by the Vp and Vpg

plots, we present no comparisons for I_p.

Figures 6 - 9 show that the n = 1 autocorrelation function provides a much better
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fit to both Vp and Vvg than the n = 0 version. For Vpg, the Tits of the MMV theory to

our simulations are less perfect than for Vp. We can see several possible explanations for

this. For instance, the mathematically simple form adopted for the n = I autocorrelation

function is not a perfect fit to the actual numerically determined one (figure I), by about the

correct fractional amount. Also, we have emphasized that the correct velocity autocorrelation

function to use is that along a particle trajectory (Meek and Jones 1973), and this function

is actually somewhat size dependent even over the range St, _ 1 (see, eg., Squires 1990,

figure 4-23). Finally, because of the deviation of our turbulent kinetic energy spectrum from

an inertial range, some of the definitions of eddy times used in the MMV theory might

be inappropriate. It would not be surprising for Vvg to be more sensitive to these small

deviations than Vp (compare figures 6 and 8, or 7 and 9). In spite of the small deviations in

Vp_, the combination of the direct comparisons of the autocorrelation functions themselves

(figure 1), and the comparison of the velocities derived using them (figures 6-9) makes it
clear that the n = 1 autocorrelation function is the best choice.

3 Summary and conclusions

We present theoretical and numerical results which describe the turbulence-driven velocities

of particles in the StL << 1 size regime which might characterize chondrules and similar

sized particles. We numerically verify the general approach of VJMR as modified by MMV,

and verify in two different ways the intuitive preference of MMV for an n = 1 gas velocity

autocorrelation function - at least along the trajectories of St, _ 1 particles. We find

theoretically that the n = 1 autocorrelation function leads to a particle-gas relative velocity

function that approaches linear dependence on particle size for particles in the St, _ 1

17



regime, and becomes and remains linear for arbitrarily small sizes. This is quite a different

result than predicted by the original VJMR n = 0 expressions. We derive simple analytic

expressions for Vp, Vpg, and Vvv (the latter, for comparable size particles only) for arbitrary

levels of nebula intensity, as characterized by its Reynolds number Re or its corresponding

"a". In a separate paper (Cuzzi 2002b) we will present some implications of these results
for meteoritics.
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Parameter Definition

Table I. List of symbols

C

C

E(k)
H

k

kL

k_
L

r

R

Re

StL

St_

ts

tk

tL

t_

Vg
Vp
Vpg

Ol

l]

l]T

_d

P9

Ps

gas molecule thermal speed

particle concentration factor

turbulent kinetic energy at wavenumber k

nebula vertical scale height

eddy wavenumber

wavenumber of largest eddy

wavenumber of Kolmogorov scale eddy

integral or largest scale in turbulent energy spectrum

particle radius

gas velocity autocorrelation function

flow Reynolds number

Stokes number relative to largest eddy

Stokes number relative to Kolmogorov scale eddy

stopping time of particle due to gas drag

overturn time of eddy with wavenumber k

overturn time of largest eddy

overturn time of Kolmogorov scale eddy ""

gas turbulent velocity (large eddy)

particle random velocity in inertial space

relative velocity between particles and gas

relative velocity between particles .-.

nebula viscosity parameter; Re = olcH/u

dissipation of turbulent kinetic energy

Kolmogorov scale

molecular kinematic viscosity

turbulent kinematic viscosity

eddy temporal frequency

gas mass density

solid particle mass density

19



4 References

Adachi, I., C. Hayashi, and K. Nakazawa (1976) The gas drag effect on the elliptical motion

of a solid body in the primordial solar nebula; Prog. Theor. Phys., 56, 1756-1771

Batchelor, G. K. (1948) Diffusion in a field of homogeneous turbulence II; The relative motion

of particles; Proc. Camb. Phil. Soc. 48, 345-362

Boss, A. P. (1996) A concise guide to chondrule formation models; in "Chondrules and the

Protoplanetary Disk", R. Hewins, R. Jones, and E. R. D. Scott, eds; Cambridge Univ.
Press; pp 257-264

Brearley, A. J. and R. H. Jones (1998) Chondritic Meteorites, in "Planetary Materials",

Revs. in Mineralogy, 36, Ch. 3; pgs 191ff.

Connolly, H. C and S. G. Love (1998) The formation of chondrules: petrologic tests of the

shock wave model; Science, 280, 62-67

Csanady, G. T. (1963) Turbulent diffusion of heavy particles in the atmosphere; J. Atmos.
Sci 14, 171-194

Cuzzi, J. N. (2002b) Blowing in the Wind: II. Diffusion and accretion of fine dust rims by

small particles in a turbulent protoplanetary nebula; in preparation for Meteoritics and

Planetary Science. .._

Cuzzi, J. N.I A. R. Dobrovolskis, and J. M. Champney (1993) Particle-gas dynamics near

the midp!ane of a protoplanetary nebula; Icarus, 106, 102-134

Cuzzi, J. N:, A. R. Dobrovolskis, and R. C. Hogan (1996); Turbulence, Chondrules, and

Planetesimals; in "Chondrules and the Protoplanetary'T)isk", R. Hewins, R. Jones, and

E. R. D. Scott, eds; Cambridge Univ. Press; pp 35-44

Cuzzi, J. N., R. C. Hogan, J. M. Paquel and A. R. Dobrovolskis (2001) Size-selective con-

centration of chondrules and other small particles in protoplanetary nebula turbulence;
Astrophys. J., 546, 496-508

Cuzzi, J. N., R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis (1998) Chondrule rimming

by sweepup of dust in the protoplanetary nebula : constraints on primary accretion; 29th
LPSC

Elghobashi, S. E. (1991) Particle-laden turbulent flows: direct simulation and closure models;
Applied Science Research, 48, 301-314

Grossman, J., A. E. Rubin, H. Nagahara, and E. A. King (1989) Properties of chondrules; in

"Meteorites and the early solar system", J. F. Kerridge and M. S. Matthews, eds; Univ.

of Arizona Press; p 619-659

Grossman, J. (1989) Formation of chondrules; in "Meteorites and the early solar system",

J. F. Kerridge and M. S. Matthews, eds; Univ. of Arizona Press; p 680-696

Hinze, J. O. (1975) Turbulence, 2nd Ed. McGraw-Hill, New York, Chapter 5

Jones, R. H., T. Lee, H. C. Connolly Jr., S. G. Love, and H. Shang (2000) Formation

of Chondrules and CAIs: Theory ;'s. Observation; in Protostars and Planets IV; V.

Mannings, A. P. Boss, and S. S. Russell, eds, University of Arizona Press; p. 927

20



Markiewicz, W. J., H. Mizuno, and H. J. VSlk (1991)Turbulence-inducedrelative velocity
betweentwo grains;Astron. Astrophys. 242,286-289

Meek,C. C. and B. G. Jones(1973)Studiesof the behavior of heavyparticles in a turbulent
fluid flow; J. Atm. Sciences,30, 239-244

Metzler, K., and A. Bischoff(1996)Constraintsonchondriteagglomerationfrom fine-grained
chondrule rims; in "Chondrules and the Protoplanetary Disk", Cambridge University
Press,Cambridge;R. Hewins,R. Jones,and E. R. D. Scott, eds

Morrill, G. E., R. H. Durisen, and G. W. Turner (1998)Note: An accretionrim constraint
on chondruleformation theories; Icarus 134,180-184

Paque, J., and J. N. Cuzzi (1997) Physical Characteristicsof Chondrulesand Rims, and
Aerodynamic Sorting in the Solar Nebula;28th LPSC Abstracts.

Scott, E. R. D., D. J. Barber, C. M. Alexander,R. Hutchison,and J. A. Peck(1989)Primitive
material surviving in chondrules: Matrix; in "Meteorites and the early solar system", J.
F. Kerridgeand M. S. Matthews, eds;Univ. of Arizona Press;p 718-745

Squires,K. (1990)The interaction of particles with homogeneousturbulence;Thesis, Stan-
ford University

Squires,K. and J. K. Eaton (1990)Particle responseandfiurbulencemodification in isotropic
turbulence;Phys. Fluids A2, 1191-1203

Tennekes,H., and Lumley,J. L. (1972)A First Coursein Turbulence,MIT Press,Cambridge
Mass.

VSlk, H. J., F. C. Jones,G. E. Morrill, and S. RSser (1.978) Induced velocities of grains

embedded in a turbulent gas; Moon and Planets, 19, 221-227

VSlk, H. J., F. C. Jones, G. E. Morrill, and S. RSser (1980) Collisions between grains in a

turbulent gas; Astron. Astrophys. 85, 316-325

Weidenschilling, S. J. (1977) Aerodynamics of solid bodies in the solar nebula; Mon. Not.

Roy. Ast. Soc. 180, 57-70

Weidenschilling, S. J. (1980) Dust to planetesimals: settling and coagulation in the solar

nebula; Icarus 44, 172-189

Whipple, F. (1973) Radial Pressure in the_Solar Nebula as Affecting the Motions of Plan-

etesimals; in Evolutionary and Physical Properties of Meteoroids, Proc. IAU Colloq. 13;

C. L. Hemenway, P. M. Millman, and A. F. Cook, eds. NASA SP 319, p.355

21




